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Abstract— As a real-time serving system interacting with a
highly dynamic environment, robotic table tennis system has a
high requirement against the accuracy and robustness of real-
time detection and localization of a ping-pong ball. Relative
to its size, the ball is a high speed flying-spinning object. The
existing methods use general features such as color and shape to
detect and localize the ball, which rigidly depends on the prior
knowledge. Their performance is susceptible to the change of
the environment, e.g., the light condition, the color of ball,
and the disturbance of human players’ presence in the image.
In this paper, we propose a learning framework that trains
a convolutional neural network to detect and localize a ball
with high accuracy. It learns useful features from data directly
without any prior knowledge. Therefore, the proposed method
can effectively deal with the situation when the ball’s color
is changing in real-time. And it is more robust to the light
condition and the disturbance of human players’ presence.
The effectiveness and accuracy of the method is verified using
the collected data set, in comparison with the state-of-the-art
method.

I. INTRODUCTION

Robotic table tennis system is an excellent research plat-
form for real-time sensing, intelligent decision making, and
servo motion planning. With the purpose to promote the
development and application of robotic technologies, John
Billingsley [1] first proposed robot table tennis competi-
tion in 1983. Many robotic table tennis systems [2]–[17]
have been designed and developed. Several systems achieve
human-level performance that can play against human play-
ers in a long rally at all kinds of speed, such as the humanoid
robot ”Wu & Kong” designed by Zhejiang University [13]
and the parallel link robot ”FORPHEUS” designed by Omron
[17].

Considering the size of table (standard size 2.74×1.525×
0.76m), table tennis is definitely one of the fastest games in
the world. For a ball with flying speed of 10m/s, it takes
about 0.274s to fly from one side to another. Therefore,
robotic table tennis system highly requires the capability
of quick-reaction from the real-time perception to motion
planning and control. Moreover, the direction of flying
velocity is various in every round and the spin effect would
result in a large trajectory bias. In order to successfully return
a ball back to the desired landing point, the robot has to
estimate the ball’s motion state and predict its trajectory
accurately, which depends on the precision of localization to
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a large extend. In addition, the temporal resolution of real-
time perception also plays an important role in the motion
state estimation and trajectory prediction. The higher the
frame rate of a camera is, the more accurate the motion
state estimation will be. As far as we know, the detection
and localization of a ping-pong ball with high accuracy and
temporal resolution is the main challenge for a robotic table
tennis system in real-time perception of the environment.

Currently, the most widely used ping-pong ball is in color
of pure white or yellow, which is a distinguishable featue
in the context of green or blue table for detection and
localization. The projection of a ping-pong ball on the image
always is a circle with a limited size from any point of
view. Consequently, most of the existing methods [6], [7],
[11]–[14], [18], [19] used the ball’s features of color, shape
and size for detection and localization. A general pipeline
of these methods is 1) Pre-process the image using adjacent
frame different (or with collected background template) to
detect the areas that contain moving objects, such as human
player, ping-pong ball and paddle, and further binarize the
processed image using a intensity threshold that is manually
selected. 2) Transform the image from RGB color space to
HSV color space and select the areas that contain a ping-pong
ball according to the rule of thumb min-max thresholds in H
and S Channel. 3) Based on the processed image, search the
ball’s contours using man-made rules and select the contour
with highest confidence as the detected ball. 4) Compute the
centroid of the ball according to the shape feature.

In most cases, those methods mentioned above can detect
and localize the ping-pong ball with high accuracy in real-
time, which helps the robot to percept the ball and play with
human players in continuous rally. However, the performance
of these method is susceptible to the light condition, i.e.,
when the luminance or the white balance changes, the
performance would get worse. Especially when the ball’s
color changes, these methods mostly fail to detect the ball.
Since 2014, Chinese Table Tennis Association has introduced
a two-color toned ball in the matches of China Super league.
Half of the surface of ball is yellow and the other half
is white, which makes the spin velocity more visible and
helps the audience have a better understanding of the game.
Obviously, these previous methods could not work effectively
under this condition.

Compared to traditional computer vision algorithms, Con-
volutional Neural Network (CNN) [20], [21] has proven to
be a powerful and efficient tool for hierarchichal feature
extraction, especially in deep layers, which has outperformed
traditional methods in the competition of Large Scale Visual



Recogniton Challenge [22]–[25]. Threrfore, the well pre-
trained deep CNNs [22]–[24] have a huge application in
object detection, image classification, and segmentation.

In 2014, Ross Girshick [26]–[28] proposed a Region-
based Convolutional Neural Network (R-CNN) that achieved
a state-of-the-art performance on object detection and se-
mantic segmentation. It uses a well pre-trained deep CNN
to extract useful features from region proposals and then
simultaneously regress the region proposals with bounding
box and classifies objects in region proposals.

Inspired by the idea of R-CNN, we proposed a learning
framework that can detect and localize the ping-pong ball
in real-time with high accuracy and robustness. First of
all, convolutional neural network is used to automatically
learn the features of ping-pong ball in different colors by
classifying the images of background and ping-pong ball.
The pre-trained convolutional neural network can effectively
detect the ball using the learned features. Second, a self-
learned spatial softmax layer (the fixed spatial softmax layer
was proposed by Levine [24]) accompanied by a ReLU layer
was proposed to localize the ball by computing the average
centroid of the detected feature pixels. Thirdly, two fully
connected layers are further connected to the spatial softmax
layer to regress the ball’s location on the image by fine-
tuning the convolutional layers. The neural network is trained
using a large data set of pictures that contains ping-pong ball
in different colors, which are collected under various light
conditions.

The rest of the paper is organized as follows. Section II
introduces the detailed mathematical formulation and archi-
tecture of the proposed learning framework. Section III is the
collection and annotation of the data set of ping-pong balls in
three different colors. In section IV, we present the training
result and conduct comparison of experiments to verify the
effectiveness and accuracy of the proposed method. In the
end, section V summarizes the advantages and disadvantages
of the proposed learning framework and gives a prospect on
the future work.

II. MATHEMATICAL FORMULATION AND ARCHITECTURE
OF THE LEARNING FRAMEWORK

The goal of our work is to localize the ball’s centroid
in image coordinate accurately. In deep learning, it usually
belongs to a regression task. However, we treat it as a binary
segmentation task, i.e., the ball is 1 and the background is
0, which achieves better performance.

In this paper, we propose a hierarchical neural network
with a similar architecture to R-CNN. It has two branches
that sharing the same convolutional layers, one is for the
classification between ball and background and the other one
is for the localization of the ball’s centroid. The classification
task contributes to the pre-training of convolutional layers,
which can effectively extract the distinguishable feature of
ping-pong ball and background. On the other hand, the
localization task further finetune the pre-trained convolu-
tional layer, which would accurately segment the ball from
background.

The architecture of our learning framework is summarized
in Fig. 1. It contains 2 convolutional layers accompanied by
ReLU layer and max pooling layer. The first convolutional
layer filters the 64 × 48 × 3 input image with 16 kernels
of size 3 × 3 × 3 with a stride of 1 pixels. The second
convolutional layer takes the output of the first convolutional
layer (nonlinearized and pooled) as its input and filters
the input with 4 kernels of size 3 × 3 × 16 with a stride
of 1 pixels. Then two fully connected layers are linked
to the convolutional layers for classification, the first fully
connected layer has 96 neurons and the second one has 2
neurons. As for localization, one self-learned spatial softmax
layer is connected to the convolutional layers followed by
two fully connected layers with 96 and 2 neurons. The self-
learned spatial softmax layer and the fully connected layers
will fine tune the convolutional layers that pre-trained by the
classfication task, evaluate the distribution of the probability
of each pixel belongs to ping-pong ball or background using
the output feature map of convolutional layer, and localize
the ball’s centroid on the image accurately.
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Fig. 1. An illustration of the Architecture of proposed Learning Framework,
explicitly showing that the classification task and localization task share the
same convolutional layers. The input to the network is a 64 × 48 sliding
window on 640× 480 image batches collected from cameras.

Usually, the more layers and the more neurons in each
layer of the neural network, the better of the performance
in hierarchical feature extraction. However, the computation
time in forward step would increase with respect to the size
of neural network. The architecture of the proposed learning
framework is chosen by multi-trials, satisfying requirements
of accuracy of feature extraction and high-speed computa-
tion.

A. Improved Spatial Softmax Layer

Using pure fully connected layers to regress the ball’s
centroid on image may work in this scenario, but it it not
a good choice from the point of view of accuracy and
efficiency. Here we propose an self-learned spatial softmax
layer using a softmax layer and a full convolutional layer.
It first compute the probability distribution of each pixel
belongs to the ping-pong ball on the feature map and then
compute the coordinates of the ball’s centroid directly, which
is more efficient and accurate.



The pipeline of the self-learned spatial softmax is shown
in Fig. 2. Since the value of the ball’s feature pixel is much
larger than the value of the background’s feature pixel on the
input feature map, the softmax layer can obviously highlight
the ball’s feature and compute the probability of each pixel
belongs to the ball. The following full convolutional layer
filters the 30 × 22 × 4 feature maps with 16 kernel of size
1 × 1 × 8 with a stride of 1 pixels. Apparently, this convo-
lutional layer would further make the ball’s feature standout
and suppress the background’s feature by weightedly add the
probability distribution maps.
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Fig. 2. An illustration of the improved spatial softmax layer. It contains
one softmax layer, 16 30×22×4 full convolutional layer, one ReLU layer.
The input to the spatial softmax layer is the 30× 22 output featue maps of
convolutional layers.

The spatial layer essentially is a full convolutional layer
with kernel size the same as the size of input feature map.
The convolution operation can be formulated as:

O =

U∑
u=1

V∑
v=1

ω (u, v)I (u, v) (1)

where I denotes the input feature map, O denotes the output
feature map, U denotes the width of input feature map,
v denotes the height of input feature map, ω denotes the
weights of the convolutional kernel. In this paper, U = 30
and V = 22.

For a general convolutional layer, the weights of each
kernel is initialized randomly and further trained by back-
propagation method. However,the fixed spatial layer [24] is
a special full convolutional layer composed of 2 kernels with
constant weights. As shown in equation (2) and (3), each row
of weights in kernel v is initialized as its index and each
column of weights in kernel u is initialized as its index.

ωv =


1 1 . . . 1
2 2 . . . 2
...

...
. . .

...
22 22 . . . 22

 (2)

ωu =


1 2 . . . 30
1 2 . . . 30
...

...
. . .

...
1 2 . . . 30

 (3)

According to (1), the spatial layer can compute the relative
image coordinate of the detected object, given the well-
trained binary feature map. Because the ball’s feature is

a circle, spatial layer can effectively compute the relative
coordinate of its centroid. In this paper, we proposed a
self-learned spatial softmax layer that the weights of full
convolutional layer are initialized randomly just as a general
convolutional layer and its weights can be well learned in the
progress of localization. In the end, two fully connected layer
with 96 and 2 neurons are used to fit the real coordinate.

III. DATA COLLECTION AND ANNOTATION

The performance of a convolutional neural network not
only depends on its hierarchical architecture but also relies
on the training data set to a large extend. The data set for
both training and testing the proposed learning framework is
collected and annotated by ourselves.

Fig. 3 shows the configuration of a binocular vision system
used in the paper. The vision system consists of two Point
Grey Research Grasshopper GRAS-03K2C CCD cameras.
Its frame rate is 120 fps (up to 200 fps) and resolution is
640 × 480 pixels. The lens used in the vision system has
4mm focal length, which guarantees a broad field of view.
The height of the vision system to the table is about 1.5m
and it can observe the ping-pong ball in more than half of
the table.
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Fig. 3. Configuration of Binocular Vision System

As far as we know, the most popular ping-pong ball used
currently are in yellow and white. In future, the two-color
toned ball that makes the spin state more visible would be
more and more frequently used. In order to make our robot
adaptive to all three types of balls, as shown in Fig. 4, we
collect a data set of them using our vision system.

In order to make sure the learning framework has a robust
performance under various light conditions, we collected the
data set by changing light conditions. As shown in Fig. 5,
each row is the ball in one color under 5 light conditions. The
first column is defined as normal light condition that used in
our robotic table tennis system currently. The second column
and third column are collected in a bright and dark light
condition. And the fourth and fifth columns are collected in
light with yellow and blue white balance.



(a) Yellow (b) White (c) Yellow-White

Fig. 4. Three kinds of ping-pong ball with different colors

Fig. 5. The Samples of Collected Data Set

Totally, 2800 images with a resolution of 640 × 480 are
collected. The ball’s centroid on image is annotated manually
using a circle to fit the ball’s contour, as shown in Fig. 6.
We crop the annotated images into smaller images with a
resolution of 64 × 48, acting like a sliding window. 5000
cropped images are selected as a data set for classification
and 28000 cropped images are selected as a data set for
localization, which ensures the data diversity and avoids
redundancy effectively.

Fig. 6. Annotation of the ball’s centroid

IV. EXPERIMENTS AND RESULTS

Using the collected data set, we first train the proposed
learning framework by a classification task as well as a
segmentation and regression task. Then a comparison of
experiments is conducted with a color-based method [13],
which effectively verifies the accuracy and robustness of
the proposed learning framework. The learning framework
is built in caffe [29] and trained using a i7-2600k CPU.

A. Training Process

The convolutional layers are first trained by classifying
the data set into ball and background. By doing this, the
convolutional layers learn the ball’s distinguishable features

and can detect the ball from background effectively. Fig.
7 shows the output feature maps of the two convolutional
layers in the proposed learning framework pre-trained by
classification. Fig. 7(c) is the 64 × 48 input data of a two-
color toned ball on the table’s edge. As we can see, the
convolutional layers detect the features of white table edge,
the yellow semi-ball and white semi-ball, which are useful
for classifying the ball and background.

(a) first layer

(b) second layer (c) input data

Fig. 7. The feature maps of two convolutional layers pre-trained by
classification. White color denotes larger value and black color denotes
smaller value accordingly in the output feature maps.

Then the convolutional layers are further fine-tuned by
localizing the centroid of ball using a self-learned spatial
softmax layer. Fig. 8 shows the feature maps of the two fine-
tuned convolutional layers and the corresponding probability
distribution maps of softmax. Fig. 8 and Fig. 7 have the same
input data. Compared to the feature maps in Fig. 7, the fine-
tuned convolutional layers further highlight the ball’s feature
and suppress the background’s distinguishable feature, i.e.,
the blue table and the white table edge, which obviously
contributes to a better localization performance. The ball’s
two colors contributes equally for feature detection after fine-
tuned.

The left-bottom probability distribution map of softmax
shows that the pixels that belong to the ball have a larger
probability than those belongs to background. However, the
other three probability distribution maps are opposite, which
the background has nearly the same distribution and the
ball has a much smaller probability distribution. Despite the
fact that they looks like unreasonable, they help the full
convolutional layer effectively decrease the side-effect of
background. A more accurate and robust localization result
is achieved.

B. Classfication Accuracy

Compared to ImageNet’s 1000 classification categories,
the classification here is a simple two-category classification



(a) first layer

(b) second layer (c) softmax layer

Fig. 8. The feature maps of two convolutional layers fine-tuned by
localization

task. Using two convolutional layers, it obtains a very high
accuracy of classification , as listed in Table I. The result
indicates that the convolutional layers are well pre-trained to
effectively detect both the ball’s and background’s features.

TABLE I
CLASSFICATION ACCURACY

ball background
ball 99.2% 0.8%

background 0.2% 99.8%

C. Localization

In order to analyze the performance of the proposed
learning framework on localization accuracy, we conduct
comparison of experiments with the color-based method
proposed by Yifeng Zhang [13] as well as the learning
framework using a fixed spatial softmax layer [24]. In
experiment, we find that the fixed spatial softmax layer is
sensitive to the ball’s size on the image. Thus the input to
the learning framework with a fixed spatial softmax layer is
the raw image with resolution of 640×480, because the ball’s
relative scale on cropped 64× 48 image is more variational
than on raw image.

500 images are used to test the performance of the three
methods. Table II listed the three method’s accuracy of
detection and localization of the ping-pong. The detection
accuracy indicates the chance that the method can success-
fully detect the ball on image. Since the proposed learning
framework always have an output of the ball’s centroid no
matter whether there is a ball on tested images, we treat it
as a failed detection if the localization error is larger than
a threshold, 8 pixels. The learning framework with a self-
learned or fixed spatial softmax layer achieve much higher

detection accuracy than the color-based method, which in-
dicates that the learning framework is more adaptable to
different ball’s colors and light conditions. Note that the
localization accuracy does not count those images that the
ball is not successfully detected by the method. As we
can see, the learning framework with self-learned spatial
softmax layer achieve the best performance in both u and
v dimensions.

TABLE II
ACCURACY OF DETECTION AND LOCALIZATION

detectation u (pixel) v (pixel)

accuracy ME RMSE ME RMSE

Self-Learned 99.2% 0.10 1.34 −0.58 1.33

Fixed 97.4% −0.68 1.96 −0.35 2.32

Color-Based 44.0% −0.32 1.40 0.77 1.60

Fit. 9 shows the distribution of the localization error on
test data set, which gives us an intuirive illustration of the
three methods’ performance.
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Fig. 9. The distribution of localization error. The radius of green circle
is 2 pixels and the radius of blue circle is 5 pixles. The proposed learning
framework with a self-learned spatial softmax layer successfully detects
ping-pong ball on 496 images, the learning framework with a fixed spatial
softmax layer successfully detects ping-pong ball on 487 images, and the
color-based method successfully detects ping-pong ball on 220 images.

We tested the computation efficiency of the proposed
learning framework on a platform of a 6G memory and i7
2600K CPU pc running a 64-bit operation system, as shown
in Fig. 10. The average computation time of the learning
framework is 1.685ms. If the method runs on a GPU, it could
be faster. It definitely satisfies the real-time requirement of
robotic table tennis system.
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Fig. 10. Computation Time

V. CONCLUSIONS

In this paper, we propose a learning framework that trains
a convolutional neural network to detect and localize a ball
with high accuracy and robustness. First of all, a convo-
lutional neural network is used to automatically learn the
features of ping-pong ball in different colors by classifying
the images of background and ping-pong ball. The pre-
trained convolutional neural network can effectively detect
the ball using learned features. Secondly, we propose a self-
learned spatial softmax layer accompanied by a ReLU layer
to localize the ball by computing the average centroid of
the detected feature pixels. Thirdly, two fully connected
layers are further connected to the special softmax layer to
regress the balls location on the image by fine-tuning the
convolutional layers. The neural network is trained using
a large data set of pictures that contains ping-pong ball
in different colors, which are collected under various light
conditions. The effectiveness and accuracy of the proposed
learning framework is verified using the collected data set,
in comparison with the state-of-the-art method.

The proposed learning framework is a general framework
for object detection and pixel-wise localization. Given a
data set, it could learn to detect and localize any objects
automatically and effectively. Currently, the learning frame-
work is tested and verified on a single object detection and
localization. In the future, the learning framework should
be improved to suit the cases of multi-objects detection and
localization.
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