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Abstract— Deep learning has achieved a great success in
both visual and acoustic recognition and classification tasks.
The accuracy of many state-of-the-art methods have surpassed
that of human beings. However, in the field of robotics, it
remains to be a big challenge for a real robot to master a high-
level skill using deep learning methods, even though human
can easily learn the task from demonstration, imitation and
practice. Compared to Go and Atari games, this kind of tasks
is usually continuous in both state space and action space, which
makes value based reinforcement learning methods unavailable.
Making a robot learn to return a ball to a desired point in
table tennis is such a typical task. It would be a promising
step if a robot can learn to play table tennis without the exact
knowledge of the models in this sport just as human players
do. In this paper, we consider such a kind of motion decision
skill learning, a one-step decision making process, and give
a Monte-Carlo based reinforcement learning method in the
framework of Deep Deterministic Policy Gradient. Then we
apply this method in robotic table tennis and test it on two
tasks. The first one is to return balls to a desired point first,
and the second one is to return balls to randomly selected
landing points. The experimental results demonstrate that the
trained policy can successfully return balls of random motion
state to both a designated point and randomly selected landing
points with high accuracy.

I. INTRODUCTION

Deep learning methods, especially deep convolutional
neural networks and deep recurrent neural networks, have
brought great breakthrough in speech recognition, visual ob-
ject detection, recognition and localization, as well as many
other domains such as natural language translation, image
segmentation, image understanding, and etc. The explosive
increase of the amount of well-labelled data and the parallel
computation ability has facilitated the great success of deep
learning methods. Many of those state-of-the-art methods
achieve higher accuracy than or comparable to that of human
in some visual recognition tasks. Besides, reinforcement
learning as a promising method in decision making and
optimization has achieved remarkable breakthroughs, e.g.,
the amazing success of AlphaGo [1] and Deep Q-Network
playing human-level performance in Atari games [2]. While
tasks like mapping from input data to output target, the
hierarchical feature detection and representation, and the
parameter training involved in the learning process can all
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be handled by using logical operation on a computer without
interacting with the real environment, it remains to be a big
challenge for a robot to master a motion decision skill that
needs to be learned by interacting with the real world.

In the field of robotics, making a motion decision when
interacting with the real environment in real-time is a quiet
common but challenging task for a robot. Playing table tennis
is such a typical task involving the dynamic motion decision,
which is considered as a high-level skill. For such a game it
is very important to decide when, where and how to strike a
ball with an arbitray initial motion state back to the desired
landing point. It is an essential prerequisite for robots to play
competitive table tennis.

For such a motion decision problem in playing table
tennis, Muelling et al proposed a four-stage striking process,
hitting the ball in the virtual hitting plane [3]. They also
provided strategies for robots to win in a table tennis game
[4] [5]. Nevertheless, it remains a great challenge in the
problem of how a robot chooses the velocity and the pose of
the racket to strike balls of various incoming motion states
and returns them to a target point, due to the complexity
of physical models. The complexity of the task lies in
its continuous state space and continuous action space, as
well as its interaction with high dimensional and nonlinear
environments.

Matsushima et al conducted a research on returning the
ball to a target point using a slide-way structured robot [6].
However, its learned policy lacks flexibility and is unfit for
a standard table tennis game. Therefore, we propose a novel
learning framework in this paper for a humanoid robot to
strike the ball to a given target point with high accuracy,
meeting the requirement of a standard and competitive table
tennis game.

The nature of this motion decision is actually a problem
of optimization. However, some complex issues involved
have made traditional methods of optimization inapplicable.
First of all, the flying model of a spinning ball is high
dimensional, nonlinear, and coupled. Given a perceived ini-
tial start-point and a designated target end-point, there are
infinite solutions that satisfy the condition, since the flying
velocity and spin velocity of the ball are all in continuous
domain. In other words, the robot theoretically has infinite
choices of action to strike the ball back to the target point
if not considering the constraints of the robot. Therefore,
it is impossible to deduce the analytic solution to back-
propagate hitting action of the end-effector, given the target
landing point. Considering the real-time requirement of the
task, it is also difficult to use a traditional optimization
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method to search the optimal numerical solutions in a high-
dimensional continuous domain. However, human players
can learn to play table tennis very well by demonstration,
imitation, and practice without knowing the specific motion
model. Inspired by this, we seek to a methodology with a
good generalization ability that could help the robot learn the
high level skill of striking the ball back to a desired landing
point within tolerable errors. This leads us to the method
of deep reinforcement learning, which is a good alternative
for both optimization problem and decision making problem.
But we face the following difficulties. First of all, the state
space of the environment is often continuous. Secondly, the
choice of the motion is often continuous in the domain of
definition. Thirdly, physical models of the environment are
often complicated and non-linear, which makes this category
of problem more complicated.

Recently, reinforcement learning brings great success. D.
Silver et al proposed Deep Deterministic Policy Gradient
(DDPG) to effectively solve problems in continuous states
and actions [7]. It has been successfully tested in playing
Atari games, displaying human-parity performance. This
success has an instructive meaning in our research. In this
work, we are dealing with a one-step process. That is, given
the input of a state, we generate an action and then get
a result from actuating this action. The difficulty from the
aspect of time series vanishes, yet the complication of high-
order, nonlinear physical models and vast range of state space
and action space rises.

In order to overcome the foregoing difficulties, we seek
to a good simulation of models for reinforcement learning.
Therefore, we establish a simulation environment of table
tennis game using several well-established models to make
our simulated result convincing. Based on this simulation
environment, we then apply a Monte Carlo based policy
gradient method and deliberately define the reward in this
task to deal with this one-step Markov Decision Process in
the framework of our humanoid robotic system, successfully
bringing about our desired result.

The rest of the paper is organized as follows. Section
II is the related work about existing reinforcement learning
theories and methods, as well as reinforcement learning tasks
in robotic table tennis. Section III presents details of our solu-
tion including the mathematical formulation and algorithms.
Section IV briefly introduces the simulation environment we
have established. At Last, Section V gives results of our
experiment and section VI summarizes our work and gives
a prospect on future works.

II. RELATED WORK

Reinforcement learning has long been a promising re-
search field in decision making for robots and artificial
intelligence. In the past, discretized methods such as Q-
learning, SARSA have performed well in many problems
such as maze or cart-and-pole [8]. Since original versions
of these approaches deal with discrete state and actions, the
performance of these methods is limited, as well as their
applications. The method of actor-critic is also proposed,

dealing with the limitation of actor-only (learning policy
only) or critic-only (learning value functions only) methods.
Reinforcement Learning in continuous state space was once
proposed by Kenji [9], utilizing the continuous method of
dynamic programming– Hamilton-Jacobi-Bellman Equations
(HJB) which gives an example of solving this complicated
task. Several other successful actor-critic methods have been
brought forth like natural actor-critic [10], A3C method [11].

In recent years, many new approaches of reinforcement
learning and its successful applications have been demon-
strated, such as game of Go, Atari games, and classical
control problems in OpenAI environment [1] [2]. A leap in
the problem of continuous state and action is the introduction
of deterministic policy gradient [12], which is the expected
policy gradient of the action value functions. This method
generally outperforms the stochastic policy gradient in high-
dimensional continuous state and action space. With this
fundamental theory, the deep deterministic policy gradient
(DDPG), which is the deterministic policy gradient us-
ing deep neural networks as function approximators. This
method also includes experience replay, which can make the
convergence faster, and what is more, enable the agent to
learn from experience, effectively utilizing data in the past.

Reinforcement learning with neural networks have many
successful real-world applications. Levine et al used the
method of end-to-end learning to make the robot learn to
screw a cap on a bottle [13]. Levine et al also used an
asynchronous reinforcement learning method on robot arms
to learn to perform a door opening skill from scratch [14].

Reward setting is also a crucial element in the problem
of reinforcement learning. The setting of reward is also a
key to the efficiency of algorithms. Andrew Ng et al proved
that modifying the reward with potential function preserves
the property of convergence of the original problem while
speeding up the convergence [15].

Learning methods in the field of robotic table tennis has
been explored before. Muelling et al used a biomimetic ap-
proach to create a human-alike stroke movement, proposing
discrete movement stages hypothesis and virtual hitting point
hypothesis [3]. It is a general trajectory generator in robotic
table tennis. The movement learning has been explored by
J.Peters et al, based on DMP (Dynamic Motor Primitives).
J.Kober et al represented elementary movement with meta-
parameters, and they made the robot to learn mappings
from circumstances to meta-parameters using reinforcement
learning [16]. Muelling et al also proposed MoMP (Mixture
of Motor Primitives) [17] to learn motor actions. It is a
method which can choose appropriate motor primitives while
generalized motor among them. These works focus more on
the motion planning of a robot arm in Robotic Table Tennis.

III. FRAMEWORK AND LEARNING METHOD DETAILS

The main framework of learning to play table tennis
is shown in figure 1. The environment consists of several
models involved in this task. Pitching Server emits a ball of
random states. Motion Model is composed of a trajectory
prediction model and a rebound model between ball and



table. Given an initial motion state, this model gives out
the state of the ball at the hitting plane or at the landing
point. Taking the motion state of ball at the hitting plane as
input, the actor generates an action. With the motion state
of ball and the action, the Rebound Model of the racket can
be simulated, and the ball flies from the robot to the other
side. At last, the landing point of the ball can be obtained
using the trajectory model again. The reward is given after
one episode, and the information of one trial can be stored
in a replay buffer from which the critic samples and trains
itself as well as the actor.

Past Experience (s, a, r)

Updated Policy

State s

Reward r

Action a
Environment

Fig. 1. Main framework of learning to play table tennis

A. Mathematical formulation

In order to solve the problem of one-step decision making
that interests us, the method of reinforcement learning we
use is modified from the work of DDPG [7]. In DDPG, the
target value for critic to learn is defined as: yt = r(st, at)+
γQ(st+1, µ(st+1|θQ))

We denote the critic and actor as Q = Q(s, a|θQ) and
µ = µ(s|θµ) respectively. θQ are weight parameters in critic
network and θµ are weight parameters in actor network. st
is the state a robot needs to interact with, and at is the action
it chooses to respond to the state. rst, at is the reward an
agent or a robot receives after it takes action.

Since our case is one-step MDP problem, target value y
decays into:

yt = r(st, at) (1)

The reinforcement learning problem is to optimize two
objective functions for critic and actor respectively:

min
θQ

L =
1

N

N∑
i=1

(yi −Q(si, ai|θQ))2 (2)

max
θµ

J =

∫
S

ρµ(s)r(s, µθ(s))ds

= ES∼ρµ [r(s, µθ(s))] (3)

Given large data, we use Adam Optimizer for optimiza-
tion. Gradients in (2) can be easily calculated and the
parameters can henceforth be changed, yet (3) is a little bit
complicated. According to the theorem proposed in [12], the
gradient can be obtained as follows:

5θµJ =
1

N
5a Q(s, a, |θQ)5θµ µ(s, a|θµ) (4)

Using this sampled gradient, we can show the actor of
agent the direction it should follows for better update locally.

B. Representation of action-value function and policy

Both the state-action-value function (critic) and policy of
action (action) are represented by a nonlinear neural network.
The structures of neural networks and initial parameters
mostly use the ones mentioned in [7].

Fig. 2. Actor (top) and Critic (bottom) neural network structures

In figure 2, we vividly present the structures of our
actor and critic and relation between them. The numbers
indicated below blocks are the numbers of each components
respectively.

C. Algorithm

Here we shall give the algorithm for solving this kind of
reinforcement learning problem. Note that this is a variant
of Deep Deterministic Policy Gradient. Since our method is
Monte Carlo based rather than Temporal Difference based,
our target value for critic is the reward itself and we do not
have to use another networks of critic and actor to store the
settings of previous version. See the Algorithm 1 for more
details of this Monte Carlo based problem.

So far, we have briefly introduced the way of solving
this one-step, high-level skill problem. Now we focus on
a specific problem, which is robotic table tennis.

D. Application in robotic table tennis

In this section, we are going to present the application of
our proposed Monte-Carlo based method into robotics table
tennis. This part is organized as follows. First of all, we
define the convention of coordinates so that we can discuss
the problem by a uniform standard. Then, we define state and



Algorithm 1 Monte-Carlo-Based DDPG
1: Randomly initialize critic network Q and actor network
µ

2: Initialize replay buffer R
3: Set the number of episodes for training M
4: for k = 1→M do
5: Initialize noise N for action exploration
6: Receive observation states sk
7: Generate action ak = µ(sk|θµ) from actor network
8: Add exploration noise to the generated action
9: Execute action ak, observe reward rk and landing

point ptarget
10: Store the trial (sk, ak, rk)
11: Sample a random minibatch of N trials (si, ai, ri)
12: Set yi = ri
13: Update critic network by minimizing the loss:
14:

L =
1

N

N∑
i=1

(yi −Q(si, ai|θµ))2

15: Update actor network using sampled policy gradient:
16:

5θµJ =
1

N
5a Q(s, a, |θQ)5θµ µ(s, a|θµ)

17: end for

actions for one-designated-landing-point task and randomly-
chosen-landing-points task respectively. At last, we will talk
about the reward setting in these specific table tennis cases.

1) Convention of Coordinates: The origin of our world
coordinate is set at the center of the whole table. The
direction perpendicular to the plane of the table upwards
is defined as positive direction of z-axis. The direction from
the center to the robot side is defined as positive direction of
y-axis. And x-axis is perpendicular to the y-z plane and its
positive direction is defined according to Right-Hand Rule.

The origin of our racket coordinate is set at the center of
the racket. The direction of the normal vector of the racket
plane towards the side of opponent is defined as positive
direction of z-axis. The direction from the bar of the racket to
the center of racket is defined as positive direction of y-axis.
Positive direction of x-axis can be obtained by Right-Hand
Rule, which is the same way in world coordinate.

(a) World Coordinate (b) Racket Coordinate

Fig. 3. Convention of Coordinates

The racket coordinate is established for calculation of
racket rebound model. Except this, variables and values are

all described in world coordinate. Positions on the half-side
of robot’s has positive y value, while negative on the half-side
of opponent’s. For example, the hitting plane of the robot is
set at y = 1.199m, while the desired landing point in the
first task is set x = 0.0m, y = –0.87m.

2) One designated landing point: First of all, we apply
this framework to a primitive task. That is, return a ball to a
single target landing point. We have defined the designated
landing point, which is defined at x = 0.0m, y = –0.87m.

a) State: The state of a ball has 9 components. Three
for ball’s position at the hitting plane, three for flying
velocity, and three for spin velocity, which are denoted as
~pin, ~vin and ~ωin respectively. We use s to denote the state
of a incoming ball at the hitting plane and it is denoted as
s =

[
~pin ~vin ~ωin

]ᵀ
.

As previously described, we use the physical status of
a ball as input to our task. Many reinforcement learning
works used images as the input for end-to-end learning, yet
our mission requires the accurate estimation of the ball’s
spin state, which is difficult to get from the image sequence
directly without any prior knowledge. Therefore, compared
to the physical description of a ball at the hitting plane, it is
inefficient to take images as input.

The components of three physical variables of a ball
is described as follows: ~pin =

[
px py pz

]ᵀ
, ~vin =[

vx vy vz
]ᵀ

, ~ωin =
[
ωx ωy ωz

]ᵀ
. Given the fea-

sible region for the robot and the limitations of ball’s motion,
the boundary of states are given in Table I. Note that balls
from the pitching machine have a low ωy and this component
of spin velocity has little impact in models. Therefore, we
set ωy as a constant to simulate the situation that ωy is not
vanished yet has little influence on the simulation.

TABLE I
STATE OF INCOMING BALL AT THE HITTING PLANE

Component Range of value
px [ -0.5 m , 0.5 m]
py 1.199m
pz [ -0.5m, 0.5m]
vx [ -0.5 m/s , 0.5 m/s]
vy [ -3.0 m/s, 0.0 m/s]
vz [ -0.5m/s, 0.5m/s]
ωx [-100.0rad/s, 100.0rad/s]
ωy 10.0rad/s
ωz [-100.0rad/s,100.0rad/s]

b) Action: The action generated from the policy con-
sists of five components, three for the translational velocity of
the racket and two for the pose of the racket. The position
of the racket is not considered, since the system is fully
capable of predicting the position of the ball at the hitting
plane with high accuracy, and it is assured that the racket
can reach the position of the ball during the striking stage.
The translational velocity of the racket is described by its
components in x, y and z direction in the world coordinate,
which is ~vr =

[
vrx vry vrz

]ᵀ
.

The pose of a racket is usually described by a normal
vector ~n3×1 =

[
nx ny nz

]ᵀ
. The normal vector is or-



thogonal to the surface of the racket in the world coordinate.
However, it is redundant to describe the pose of a racket
using a vector of three components, since in rebound model,
it is not our concern whether the bar of the racket is at top or
at bottom. In other words, we do not care about the rotation
along the direction of y-axis in the world coordinate. Thus,
the pose of the racket when hitting the ball is described by
the other two components nx and nz , while we set ny = −1.

And the action is denoted as ~a =
[
~vr ~n3×1

]ᵀ
. Given

the fact that the robot has its own limits in actuation, the
available domain of action must be constrained. We set the
boundary of the action, according to the ability of our robotic
system Wu&Kong, as described in Table II.

TABLE II
ACTION GENERATED BY POLICY

Component Range of value
vrx [ -0.5 m/s , 0.5 m/s]
vry [ -3.0 m/s, 0.0 m/s]
vrz [ -0.5m/s, 0.5m/s]
nx [-0.5, 0.5]
ny -1
nz [-0.5,0.5]

3) Randomly selected landing points: Based on the
method we proposed, we also explore on the problem of
learning to return balls to multiple landing points. In order
to do this, we take the landing points into account.

a) State: In spite of the nine states of the position, rota-
tion velocities and linear velocities, we add two-dimensional
state ptarget (the height is always the same when it hits
the table) into the input to our framework. Now the input
of states becomes s =

[
~pin ~vin ~ωin ~ptarget

]ᵀ
. Now,

we will train the model using randomly distributed target
point value, but we have constrained the target point in
a reasonable range which would meet the requirement of
competitive table tennis. The constraint is listed in the table.

TABLE III
RANGE OF TARGET POINTS AS INPUT STATES

Component Range of value
ptargetx [ -0.8m, 0.8m]
vtargety [ -1.1m, -0.3m]

b) Action: In this problem, the action is the same as
the one landing point task.

4) Reward Setting: The setting of reward is a crucial part
in the problem of reinforcement learning. How reward is
formulated decides how well the task is learned. In the two
tasks mentioned above, our reward is given as follows:

R = −k(‖p− ptarget‖+ ‖zset − znet‖) (5)

In the equation above, k is a scalar coefficient which can be
adjusted due to different situations and training of networks.
Here we set k = 5. p is the actual landing point, ptarget
is the target landing point. The first term in reward is the
Euclidean distance between these two points. znet is the

actual height when the ball flies across above the net, and
zset is the set height, which is 0.27m, higher than the net
height of 0.1525m. The second term is the Euclidean distance
of these two heights.

The second term is a crucial one. It not only reduces
the number of solutions, but also constrains the height of
the ball when flying across the table without deliberately
checking if the ball is netted every time (Since if the ball
is netted, the second term is relatively large, away from the
set height and result in low reward. Therefore, the algorithm
will seek for other solutions with smaller absolute value of
the second term. If the ball is too high, it might hit the
roof of the room, which also needs to be circumvented).
It is a similar idea from converting constrained problem to
the unconstrained problem in traditional optimization, yet
suitable for this reinforcement learning task.

IV. SIMULATION ENVIRONMENT FOR LEARNING

In this problem, it is essential to build an environment
that is consistent with the real-world situation. There are
three essential parts involved, which are the trajectory model
of a flying-spinning ball, the rebound model of a spinning
ball with table and the rebound model of spinning ball
with racket. The following is the brief introduction of our
simulation environment on which our results rely.

A. Trajectory model of a flying spinning ball

The trajectory model, or in other words, trajectory predic-
tion model of a flying-spinning ball is based on a continuous
motion model (CMM) derived by Zhao et al [18]. With this
model, we can effectively take spinning velocity into account
without undermining the accuracy of this prediction with real
observation.

B. Rebound Model of a spinning ball on table

The rebound model of a spinning ball is established
according the work of Zhao et al [19]. The model uses
the mean value theorem, momentum theorem and angular
momentum theorem. The effectiveness and accuracy of this
model was verified in the mentioned work.

C. Rebound model of spinning ball on racket

This model is our recent progress. The model deals with
the spin velocity of the ball which makes the problem very
complicated. First of all, we convert variables in world
coordinate into racket coordinate for decoupling. And then
we predict the states of the ball flying back following
formulations as follows:

voutz = −αzvinz + βzv
racket
z

voutx = vinx + fµx(~vin, ~ωin, ~vracket)(v
out
z − vinz )

vouty = viny + fµy(~vin, ~ωin, ~vracket)(v
out
z − vinz )

ωoutx = ωinx +
m

I
fµlx(~vin, ~ωin, ~vracket)(v

out
z − vinz )

ωouty = ωiny +
m

I
fµly(~vin, ~ωin, ~vracket)(v

out
z − vinz )

ωoutz = ezω
in
z

(6)



Where fµx, fµy, fµlx, fµly, αz, βz, ez are coefficients of
collision, m is the mass of a ball and I is the inertia of
momentum of a ball.

We have briefly presented models that we use in our simu-
lation environment. The simulation environment is visualized
as in figure 4. In next section, we would present our results
of our solution.

Fig. 4. Simulation environment

V. EXPERIMENTAL RESULTS

A. One designated landing point
Given the fact that the diameter of a table tennis ball is

0.04m, we consider ±0.05m as acceptable errors from the
target landing point. The intuitive interpretation is that the
actual landing point within the area the same as the surface of
a racket is acceptable. Given the actuator error of the robot
and the uncertainty within each model, it is reasonable to
accept this level of error. We evaluate the performance of a
learned policy by simulating 5000 times of various incoming
ball and examine the result of landing points.

We trained the problem for 20000 episodes (times) and
results are shown in figure5(a) to 5(f) and figure 6. Figure
5(a) is the result of randomly initialized policy , and figure
5(b)to 5(f) shows the performance after training 10000 times,
30000 times, 50000 times, 100000 times and 200000 times
respectively. At the end of actor-critic training, we obtain
a good performance of a policy, as presented in figure 6.
To show this result more clearly, we have presented the
percentage of landing points within a range of 0.05m of
the target landing point in table IV, which consists from
the intuitive observations of figures. Note that during the
training, the performance might be undermined since it is
changing from one optimum to another one, which result in
the lower performance after 100000 times than after 50000
times.

TABLE IV
PERFORMANCE OF ONE DESIGNATED LANDING POINT

Numbers of Training Within ±0.05m of target landing point
0 0.00%

10000 14.06%
30000 50.98%
50000 78.92%

100000 67.58%
200000 99.22%

To make sure that our agent learns a converged value
function and policy, we set the learning rates of critic and
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Fig. 5. Distribution of landing points after numbers of learning

actor 0.001 and 0.0005 respectively, in accordance to the
theory of convergence in actor-critic algorithm [20]. What is
more In order to learn the policy robustly and converge to
local optima, we reduce the mean and variance of exploration
noise as the number of episodes increases.

B. Randomly selected landing points

In this subsection, we evaluate the performance of the
model on 10 randomly selected landing points.

We have also trained the model for 200000 times in total,
and we show the process of learning from 7(a) to 7(f).
Among all the figures, 7(a) is the result from randomly
initialized weights, 7(b) to 7(f) are results from 10000,
30000, 100000, 200000 times respectively. After the training
finished, we get a pretty satisfactory result just as the last
figure indicates. For better demonstration of the performance,
we place the results in the table V. For each target landing
point, we show the percentage of the balls landing within
the range of 5cm of the landing point out of 5000 balls.

We also present the percentage of landing points within a
range of 0.05m of the target landing point in table while set
the learning rate the same as in the problem of one designated
landing point.

C. Real-time Requirement

The time the actor takes to generate an action takes about
0.3ms. The traditional nonlinear optimization method takes
1.7s in calculating one solution of action using Matlab. We
can see that our method has better real-time performance than
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Fig. 6. Result after 200000 times

TABLE V
PERFORMANCE OF MULTIPLE LANDING POINTS

Landing Points (within ±0.05m)
Training (0.0,-0.87) (0.3,-0.4) (0.3,-1) (-0.3,-0.4)

0 0.00% 0.00% 0.00% 0.00%
10000 0.33% 3.78% 0.37% 6.87%
30000 78.37% 49.22% 53.00% 17.72%
50000 88.10% 86.67% 72.12% 52.57%

100000 97.97% 91.12% 95.13% 66.43%
300000 99.92% 98.12% 98.70% 96.30%

(-0.3,-1.0) (-0.6,-0.6) (0.6,-0.6) (0.0,-0.5)
0 0.00% 0.00% 0.00% 0.00%

10000 5.00% 4.90% 0.38% 9.60%
30000 68.77% 17.73% 55.85% 56.23%
50000 77.72% 66.28% 39.93% 86.30%

100000 86.84% 89.53% 62.47% 96.85%
300000 99.93% 93.15% 91.95% 99.48%

(-0.2,-0.7) (0.2,-0.7) Average
0 0.00% 0.00% 0.00%

10000 5.97% 1.90% 3.42%
30000 70.48% 77.60% 54.49%
50000 92.65% 87.85% 75.02%

100000 98.58% 98.37% 82.33%
300000 100% 99.80% 97.74%

the traditional optimization method. The program runs in a
computer using 24-core Intel X5670 CPU and the system
uses Ethernet communication between the robot and the
computer. Therefore, our methods can meet the real-time
requirement in our existent system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we consider a category of problem, which
concerns high-level, one-step skill. Then we deal with the
problem of returning a flying ball with rotation to a target
landing point. We model this problem as a one-step Markov
Decision Process, and then treat it as a Monte Carlo based
reinforcement learning task. Our work shows that our solu-
tion, which is a Monte Carlo version of Deep Deterministic
Policy Gradient, deals with the task of returning spinning
balls to a desired landing point with good performance. Yet
how to make the function approximators (critic and actor)
converge to better local optimum needs more exploration,

(a) Initialized (b) Trained After 10000 times

(c) 30000 times (d) 50000 times

(e) 100000 times (f) 200000 times

Fig. 7. Distribution of landing points after numbers of learning

given the complexity and non-convexity of non-linear neural
networks.

Our result shows the possibility for more accurate control
in robotic table tennis and gives the opportunity for a human-
like robot to play in a competitive table tennis game. More
work will be devoted into the transfer learning of policy,
which would have one learned policy applied to any landing
point within feasible region for the robot. Moreover, our idea
and our reward setting have an instructive meaning in the
learning of other similar sports such as badminton when the
incoming object is in various dynamic states instead of static
states.
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