
Learning Primitive Skills for Mobile Robots

Yifeng Zhu1, Devin Schwab1, Manuela Veloso1

Abstract— Achieving effective task performance on real mo-
bile robots is a great challenge when hand-coding algorithms,
both due to the amount of effort involved and manually tuned
parameters required for each skill. Learning algorithms instead
have the potential to lighten up this challenge by using one
single set of training parameters for learning different skills,
but the question of the feasibility of such learning in real robots
remains a research pursuit. We focus on a kind of mobile
robot system - the robot soccer “small-size” domain, in which
tactical and high-level team strategies build upon individual
robot ball-based skills. In this paper, we present our work using
a Deep Reinforcement Learning algorithm to learn three real
robot primitive skills in continuous action space: go-to-ball,
turn-and-shoot and shoot-goalie, for which there is a
clear success metric to reach a destination or score a goal. We
introduce the state and action representation, as well as the
reward and network architecture. We describe our training
and testing using a simulator of high physical and hardware
fidelity. Then we test the policies trained from simulation on
real robots. Our results show that the learned skills achieve an
overall better success rate at the expense of taking 0.29 seconds
slower on average for all three skills. In the end, we show that
our policies trained in simulation have good performance on
real robots by directly transferring the policy.

I. INTRODUCTION

It has been a great challenge to achieve effective task
performance on real mobile robots due to a great amount
of effort involved. When a new skill is designed, the code
needs to be rewritten and new parameters need to be tuned.
Using learning algorithms shows the potential of lightening
up the challenge above by using a single set of training
parameters, but the feasibility of learning algorithms using
real robots still remains a research pursuit. In this work, we
focus on one of the mobile robot systems - robot soccer
“small-size” domain. We use Deep Reinforcement Learning
(DRL) algorithm to learn primitive skills instead of end-to-
end skills for complex tasks so that primitive skills can be
learned easily, and they can be easier to reuse, compose to
complex skills.

Robot soccer “small-size” domain is a real-time, cen-
tralized multi-agent robot system [1]. Robots used in this
system are omni-directional mobile robots which possess
the ability to dribble and kick the ball. The system has
overhead cameras to capture the vision information of the
field. The vision information is streamed to a computer for
processing. The processing of images is merely based on
color features. Each robot has a “butterfly pattern” which is
used for identifying a robot’s team and id number, and the
ball is in pure orange [2]. After applying image processing

1Yifeng Zhu, Devin Schwab and Manuela Veloso are with Carnegie Mel-
lon University, Pittsburgh, PA, USA yifengz2@andrew.cmu.edu

dschwab@anderw.cmu.edu mmv@cs.cmu.edu

and state estimation methods like Kalman filter, the physical
state features are obtained. Based on these state features,
each team sends commands via radio to control robots.

In this robot soccer “small-size” domain, tactical and high-
level team strategies are used within a successful framework
of STP (Skills, Tactics, Plays) [3]. STP builds upon robot-
ball-based primitive skills, which are referred to as “skills”
in the rest of the paper.

In this paper, we learn three primitive skills using DDPG
(Deep Deterministic Policy Gradient) [4]: go-to-ball,
turn-and-shoot and shoot-goalie. We describe our
training using a simulator with high physical, hardware
fidelity. Previously, Schwab et al. presented the work of
learning go-to-ball and turn-and-shoot in robot
soccer “small-size” simulator [5]. Although this work shows
the potential of learning skills in continuous action space
for mobile robots, some improvements remain to be done.
First of all, reward functions can be improved for better skill
performance, and network structure was different for each
skill. Secondly, while we were able to acquire a reasonable
turn-and-shoot policy, the training diverged. Thirdly,
there was no real robot evaluation.

To address these issues in previous work, we present
the following contributions. Firstly, We present concise,
improved reward functions for better performance, as well as
using a single network structure for learning all skills. Specif-
ically, go-to-ball and turn-and-shoot in this paper
are similar to the ones in previous work, but with improved
reward shaping functions and better learning performance as
we will discuss in section III. Secondly, we train a new skill
of shooting at a static goalie which enlightens the first step
of using DRL in adversarial condition for “small-size” skill
learning. At last and most importantly, we test our trained
policies from simulation directly on real robots.

As our results show, the learned skills achieve an overall
higher success rate at the expense of taking 0.29 seconds
slower on average for all three skills. Our work also shows
that the learned policies from simulation have equally good
performance on real robots in continuous action space by
directly transferring the policy.

The rest of the paper is organized as follows. Section II
introduces related works on learning for robotics. In sec-
tion III, we introduce the skills and the problem formulation.
Section IV presents all the evaluation of learned skills both
in simulation and using real robots. Section V gives a
conclusion to this work and discusses future work.

II. RELATED WORK

In recent years, Deep Reinforcement Learning (DRL)
algorithms such as Deep Q-Networks (DQN), Deep De-
terministic Policy Gradient DDPG have demonstrated great
success for agents to learn policies in Markov Decision
Process (MDP) environments [6] [7] [4]. DQN shows human
level control in Atari games, and DDPG shows that it can
learn low-level control tasks as well as pixel-based control
in continuous action space. Other recent algorithms such as
A3C, TRPO, PPO all enjoy success in learning policies of
control tasks for agents [8] [9] [10]. DRL is also known for
playing a master level of the Go game [11] [12].

Robot soccer is a term referring to a wide range of exist-
ing, general robot systems which play soccer. It may range
from omnidirectional robots to humanoid walking robots.
Though all these robot systems are categorized to robot
soccer, it is important to notice that all these systems have
many differences from one another in coordination strategy,
real-time requirement, perception setup, etc. For example,
CMDragons 2015 Champion uses a selectively reactive
coordination which is different from other systems [13].
Therefore, different systems should be considered separately
instead of identical in terms of conducting research.

Much learning research has been conducted based on the
robot soccer related domain. Stone et al. has studied machine
learning techniques in the subgame of robot soccer – Keep-
away [14]. The goal of this task is to keep the ball as long
as possible from the opponents. Both genetic programming
methods and reinforcement learning methods have been used
for solving this problem [15] [16] [17].

An evolutionary strategy approach has been applied to
learn robot soccer humanoid walking. MacAlpine et al.
used Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) approach to optimize parameters for humanoid
walking [18] [19]. In this paper, we also compare our DRL
evaluation with CMA-ES approach, which shows the overall
advantage of DRL approach.

Reinforcement learning has also been used to learn skills
on real robots for robot soccer “middle-size” [20]. However,
since it requires deliberately discretizing action space, it
might make the controllability of tasks impossible if dis-
cretizing is improperly done or discretizing is too coarse.
Ours directly deal with continuous action space.

Recently, DRL is applied to skill learning in robot soc-
cer “small-size” simulation. Hausknecht et al. propose the
parameterized action space which combines the discrete
and continuous action components [21] [22]. They learn
a policy of navigating to a ball and shoot on an empty
goal from demonstrations, and they make robot learn to
manipulate ball from scratch. In their work, they show the
success of applying DRL in the robot soccer domain, but an
issue remains. Since they learn skills from end-to-end, it is
impossible to decompose basic components like navigating
to a ball from a learned policy and use it in other tasks
such as navigating to ball and pass, which greatly limits the
applicability of learned policies. There are also some previ-

ous works on sim-to-real testing such as using Progressive
networks for manipulation tasks or learning robust policies
for agile locomotion tasks [23] [24].

Previous work has explored the first step of using DDPG
for skill learning in robot soccer “small-size” domain sim-
ulator [5]. The difference and contribution of this work
compared to the previous one has been discussed in section I.

III. PROBLEM STATEMENT AND METHOD

In this section, we describe the environmental setup for
learning skills. First of all, we will give a quick review
of two skills learned in previous work and introduce the
new skill. Then we briefly introduce the DRL algorithm
DDPG that we use, along with techniques for speeding
up the convergence. At last, we describe the environmental
setup for training three skills. We will briefly review the
state and action space mentioned for go-to-ball and
turn-and-shoot, along with simpler reward functions
presented in this paper. Then we will introduce the state,
action and reward function for new skill shoot-goalie.

A. Skill Description

In a robot soccer or human soccer game, ball possession
and scoring are essential for a team to win. By hand coding,
it takes a lot of human effort to create new skills for ball
possession or scoring as different parameters need to be
tuned for each skill. Therefore, we want to create skills
using a learning algorithm. We focus on three skills that
are related to ball possession and scoring: go-to-ball,
turn-and-shoot and shoot-goalie. These threes
skills have a clear success metric so that we can easily eval-
uate the learned policy. In the previous work, we have pre-
sented two skills go-to-ball and turn-and-shoot,
which we will review briefly here. And we have an intro-
duction of another skill, shoot-goalie.

We give a brief description of two mechanical struc-
tures to explain how the robot manages to dribble and
kick which are essential for turn-and-shoot and
shoot-goalie skills. Dribbler is a cylinder a robot has
in the front. When the cylinder rotates fast enough, it can
hold the ball and manipulate the ball while it is moving. It
is basically a robot’s ability to manipulate ball by meaning
dribbling. Kicker is a solenoid which is reset by an elastic
band and when the robot kicks, the solenoid hits the ball
hard so that the ball is bounced away. The overview of the
robot is shown in Figure 1.
go-to-ball skill: go-to-ball skill is a fundamen-

tal skill for robot navigating to the ball. By using this
skill, a robot should learn to move to the ball. In the
go-to-ball skill, a robot is spawned at an arbitrary
position with arbitrary orientation, and the ball is randomly
placed away from the robot in a certain range of distance.
The goal of this skill is for robots to learn how to navigate
towards the ball and touch the ball with its dribbler.
turn-and-shoot skill: This skill requires that the

robot turns itself while dribbling the ball and shoot at the
goal when facing it. For this skill, the robot is spawned on

the field with arbitrary orientation, and the ball is spawned
on the robot’s dribbler. The robot needs to learn the proper
control of dribbling strength and rotation velocity, as well as
proper kick strength for shooting at goal.
shoot-goalie skill: For the shoot-goalie skill,

we learn to turn and shoot on a goal while having a static
goalie sitting in the middle of the goal. A stationary, attacker
robot is spawned facing towards the goalie, and the ball is
placed on the robot’s dribbler. The attacker robot should learn
to shoot avoiding the goalie, meaning that it needs to rotate
and kick with proper strength so that the ball is not blocked
by the static goalie while the robot shoots the ball within the
range of goal. Moreover, if kick strength is not large enough,
the ball will not roll far enough. Because the attacking robot
is arbitrarily positioned on the field, it increases the adversary
of this task.

In all skills, if the robot completes an episode within the
maximum time steps limit, it is considered to be a success.
If it exceeds maximal time steps limit before it succeeds, the
episode is considered as a failure.

Fig. 1: Robot and ball.

y

W

x

W

x

R

y

R

Fig. 2: Simulation rendering.

Figure 2 shows the example of simulation rendering. The
green background is the soccer field. The blue circle is the
robot we control, and the cutting surface is the robot’s front
face whose normal outward is the robot’s orientation. This
figure also shows the definition of the world frame of coor-
dination and the robot’s frame of coordination. (xW

, y

W

) is
the world frame, while (x

R

, y

R

) is the robot’s frame. The
yellow circle is an opponent’s robot. The orange circle is the
ball. There are two goals on each side. The simulation uses
a physically realistic engine to model the robot’s motion,
collisions between objects, etc.

B. Algorithm

For learning three skills mentioned above, we use Deep
Deterministic Policy Gradient (DDPG) algorithm [4] for
learning policies. DDPG is an actor-critic, policy gradient
algorithm which can deal with continuous action space. It
has been shown to work in complex control tasks. It also
uses a target network in the actor-critic framework, and it has
a replay memory which stores samples during training and
used for updating the policy. Since our states and actions are
also continuous, DDPG is a suitable algorithm for training
our policies.

When the exploration for action space is large, DDPG
sometimes has a hard time to converge. We use two ap-
proaches to speed up the convergence. One is to leverage
demonstrations for DDPG algorithm [25]. Before updating

network, we fill in the replay memory with some demon-
stration transitions. These demonstrations are non-optimal,
but can make robot receive some good rewards. By having
some good demonstration examples in the replay memory,
the policy will have a better idea of updating direction, and
it can prevent cases such as an agent is exploring all the
time but never has a chance of meeting a successful episode.
The other approach which helps DDPG to converge faster is
reward shaping. Usually, the reward is too sparse for the task
that reward shaping is used for faster learning.

C. Environmental Setup

In this part, we present state representations, actions and
reward functions for learning skills. For the state representa-
tion, we use state vectors instead of image inputs due to the
computation efficiency that a robot soccer system requires.

Notice that in this part, all variables are transformed into
robot’s frame (relative coordinates). There are two benefits
to represent in robot’s frame. First of all, the robot’s low-
level velocity command is in robot’s frame, which makes the
state input more relevant to relative coordinates. Secondly,
the representation is not strictly related to the actual size
of the environment. When specifying the angle difference
relative to the robot, we refer to the angle difference between
the direction of an object relative to the robot and robot’s
orientation.

P

left

P

right

P

top

P

down

(a) go-to-ball

↵

�

✓

l

✓

r

(b) turn-and-shoot

✓

goalie

l

✓

goalie

r

(c) shoot-goalie

Fig. 3: Parts of the state representations for three skills.

1) go-to-ball skill: The state features for this skill
follow from [5] as follows:

s = (P

B

, V

R

,!

R

, d

r�b

, P

R

top

, P

R

bottom

, P

R

left

, P

R

right

)

where P

B is the x-y location of the robot, V

R is the
robot’s linear velocity, !

R is the robot’s angular veloc-
ity, d

r�b

is the distance from the robot to the ball and
P

R

top

, P

R

bottom

, P

R

left

, P

R

right

are relative coordinates of the
closest points on the top, bottom, left, right edges of the
field to the robot. The robot’s action space includes its
linear velocity, and its angular velocity, which are noted as
(v

R

x

, v

R

y

,!

R

), which is the same in previous work [5].

Because the field is relatively large compared to the ball,
it has a very low probability for the robot to merely explore
in a sparse reward setting to exactly touch the ball using
its dribbler. In previous work [5], reward functions are
considered separately for distance and angle differences. In
this work, we simplify reward function by treating x, y and
✓ equally as follow:

r

total

= r

contact

+ r

distance

where,

r

contact

=

(
100 ball on the dribbler
0 ball not on the dribbler

r

distance

=

5p
2⇡

exp(�
d

2
r�b

+ ✓

2
r�b

2

)� 2

Here ✓

r�b

is the direction of the ball relative to robot.
r

contact

is the sparse reward regarding success. r

distance

drives the robot going near the ball and adjusting its ori-
entation towards the ball in order to obtain more reward.
Here we choose meter as the unit of d

r�b

so that we can
have the distance and angle value in the similar value range.
This reward function prevents the redundancy of designing
a new reward function for angle variable only, which also
reduces the confusion to the training caused by having two
independent reward functions.

We also apply the technique of DDPG from demonstration.
During the demonstration process, the ball is always spawned
right in front of the robot and the given action is simply
driving straight forward. By doing this, the replay memory
is filled with simple and good demonstrations of navigating
towards a ball.

2) turn-and-shoot skill: As presented in previous
work [5], state features include:

s = (P

B

, V

B

,!

R

, d

r�g

, f(✓

l

), f(✓

r

))

where P

B is the ball position, V B is the ball velocity, !R

is the robot’s angular velocity, d
r�g

is the distance between
the robot and the center point of the goal line, ✓

l

and ✓

r

are
angle differences between the robot and left, right goalposts
respectively. Here f(✓) is defined as a vector function which
is (sin(✓), cos(✓)). ✓

l

and ✓

r

are also shown in the Figure 3b.
And the associated action space is (!

R

, dribble, kick) for
rotating, holding the ball, shooting at correct timing as
described in [5].

Notice that we use trigonometric functions of angles for
states instead of angles directly. The reason is that two
numerical values might represent the same angle because
of its periodicity, and this would cause confusions. There-
fore, by using trigonometric functions, we can eliminate the
confusion introduced by the periodicity of angles.

In the previous work [5], reward shaping for this skill
resulted in diverged training. Here we present a reward

function which results in converged tranining. The reward
function is:

r =

8
><

>:

e

(↵���0.05)⇤|V B |
5 � 1 ball is kicked

�0.5 ball not on dribbler before kick
0 otherwise

Here ↵ is the angle between two goal posts relative to
robot’s position, and � is the larger one of angle differences
between the kicking direction and two goal posts (we cal-
culate inferior angles). These two angles are also shown in
Figure 3b. So the reward shaping would penalize the robot
if it kicks hard in a wrong direction, or reward the robot if
it kicks as hard as possible towards the goal and score.

In this skill, we also use DDPG from demonstration. Dur-
ing the demonstration, the robot is spawned facing towards
the center of the goal, and is given actions of shooting
towards without rotating and dribbling.

3) shoot-goalie skill: shoot-goalie skill is a skill
that a robot shoots against a stationary goalie. This is an
adversarial scenario because it needs to avoid shooting at
the goalie. The state features we choose are:

s =(P

B

, V

B

,!

R

, d

r�g

, f(✓

l

), f(✓

r

),

f(✓

goalie

c

), f(✓

goalie

l

), f(✓

goalie

r

))

where all the variables share the same meaning as ones
in the turn-and-shoot skill except for ✓

goalie

c

, ✓goalie
l

and ✓

goalie

r

. ✓

goalie

c

is angle of the direction of the goalie
relative to the robot, while ✓

goalie

l

and ✓

goalie

r

denote the
angle differences from the robot to the left, right point of
the goalie. Figure 3c shows ✓

goalie

l

and ✓

goalie

r

.
In this skill, we assume that the robot’s dribbler is on, and

it just needs to learn to rotate to proper shooting angle and
kick. In this skill, the robot dribbles all the time so that we
focus more on learning the timing to shoot. Thus the action
space is consisted of (!

R

, kick). The robot needs to kick
when it is at the orientation where the ball can avoid the
goalie.

Here we can just use a sparse reward function so that we
don’t shift complexity into reward engineering:

r =

8
><

>:

1 the episode succeeds
�1 the episode fails
0 otherwise

The episode is considered to be successful when the ball
is in the goal and when it crossing the goal line, it is 100mm

away from both sides of the goalie. This setting prevents the
robot from learning to shoot at the robot and bounce back
into the goal, which is a risky and unwanted action.

For shoot-goalie skill, we do not fill in any
demonstration. We show in the next session that
shoot-goalie skill learned well even in the sparse
reward setting.

As mentioned in section II, we compare the performance
of DRL method with CMA-ES. CMA-ES approach belongs
to the idea of evolutionary strategy. For our purpose, it
samples several candidates of parameters for parametrized

policies from a Gaussian distribution in each iteration and
updates the distribution from the performance of candidate
policies. The details of CMA-ES can be found in [19]. For
the comparison of CMA-ES, we use the same state, action
and reward settings.

IV. EXPERIMENTAL RESULTS

In this section, we show the experimental results of skill
learning. We first present the result of training curves, and
then evaluate policies by comparing with hand-coded skills
from perspectives of success rate and time performance. We
also evaluate skills on real robots, showing that the policies
achieve good performance by directly transferring the policy
from simulation.

A. Training

Here we present the network structure for skill learning,
and all the hyperparameters for training. The actor network
has 2 hidden layers with 300, 400 units respectively. After
each layer, we apply ’relu’ activation functions and layer nor-
malization [26]. The critic network also has 2 hidden layers
with 300, 400 units respectively, and action from the actor is
included before the second hidden layer of the critic. During
the training, we also choose Ornstein-Urlenbeck process as
our exploration noise. All the policies are trained in a simu-
lator with high physical and hardware fidelity. Table I shows
the hyperparameters we use for DDPG to train policies. For
the comparison approach CMA-ES, we set the initial value
of variance to 1, 0.1, 0.1 respectively for go-to-ball,
turn-and-shoot and shoot-goalie skills. We also
choose 16 candidate policies from each sampling for every
generation and we train the policy for 1000 generations.

TABLE I: Hyperparameters for learning skills

Hyperparameters Value

critic learning rate 1⇥ 10�3

actor learning rate 1⇥ 10�4

go-to-ball replay mem size 1,000,000
go-to-ball noise parameters ✓ = 0.15, µ = 0,� = 0.3
turn-and-shoot replay mem size 450,000
turn-and-shoot noise parameters ✓ = 0.15, µ = 0,� = 0.1
shoot-goalie replay mem size 100,000
shoot-goalie noise parameters ✓ = 0.15, µ = 0,� = 0.1

As we mention in section III, we utilize
DDPG from demonstration for go-to-ball and
turn-and-shoot skills. We have 10,000 demonstration
transitions for both skills. For generating the training curve,
we save the network weights with a certain frequency
and test saved policies after training is done. During the
testing, we run 100 episodes and calculate the percentage
of successful episodes on each saved policy. We train three
times for each skill, and the training curves are shown in
the Figure 4.

B. Skill Evaluation

In this part, we evaluate the policies trained for three
skills. We empirically demonstrate that our trained policy

(a) go-to-ball skill (b) turn-and-shoot skill

(c) shoot-goalie skill

Fig. 4: Training curves for all three skills.

TABLE II: Comparison of hand-coded policy and trained
policy

Hand-coded Policy Trained Policy CMA-ES Policy

go-to-ball skill 1.0 0.999 0.02
turn-and-shoot skill 0.71 0.878 0.186
turn-and-shoot skill (fine-tuned) 0.948 0.878 0.186
shoot-goalie skill 0.978 0.99 1.0

TABLE III: Comparison of time taken between hand-coded
policy and trained policy (unit: s)

Hand-coded Policy Trained Policy

go-to-ball skill 1.46± 0.47 2.11± 1.19
turn-and-shoot skill 2.11± 0.99 2.35± 2.01
shoot-goalie skill 1.59± 0.36 1.56± 0.76

has reasonable performance by comparing the learned skills
with existing hand-coded skills. We support our argument by
showing the statistics collected for trained skills and hand-
coded skills.

In table II, we show the success rate of all three skills
using three approaches - hand-coded, reinforcement learning
and CMA-ES. We evaluate final policies over 500 runs. We
can see that CMA-ES only learns the shoot-goalie skill
perfectly, but hardly learns reasonable policies for the other
two skills. Also for turn-and-shootskill, the hand coded
policy without fine-tuning performs significantly worse than
the trained policy. Only after taking a lot of effort fine-tuning
some threshold in the code does the performance go up,
which is also presented in the table. This table shows the
overall higher success rate of DRL approach compared to
original hand-coded policy (without fine-tuned deliberately)
and CMA-ES.

We further compare the time duration it takes between
hand-coded skills and learned skills. In table III, we show
the mean and standard deviation of time taken by skills to
complete tasks. For this statistics, we evaluate final policies
over 500 runs. This table shows that learned skills take
slightly slower time (0.29 seconds on average of all skills)
when they have the overall better success rate than other
approaches.

Fig. 5: Distribution of where ball crosses the goal line.

For shoot-goalie skill, we also evaluate the distribu-
tion of the locations when the ball crosses the goal line, as
Figure 5. Over 500 runs of the policy, the ball goes into
the goal for 498 times. Notice that the x axis is showing
the goal line, which is from �600mm to 600mm. The
distribution figure shows that the converged policy always
chooses one side to shoot. Ideally, we would like the policy
to learn the idea of “open angle” in an adversarial scenario,
which means that the robot learns to shoot on both sides
with equal probability. The observed result is due to the
deterministic property of DDPG and a simple sparse reward
function without any additional information. As a result, it
is more likely to shoot at one side of the goal.

C. Real Robot Testing

We test go-to-ball, turn-and-shoot and
shoot-goalie skills on real robots as well. We put the
robot in different initial states to test final policies. We test 7
runs for go-to-ball, 36 runs for turn-and-shoot and
12 runs for shoot-goalie. We test these three skills with
different numbers of test runs because we only need to test
the performance of robot starting in different initial state,
so we only choose a reasonable number of initial states
for each run. The result is that go-to-ball succeeds 6
out of 7 runs, turn-and-shoot succeeds 33 out of 36
runs, and shoot-goalie succeeds 11 out of 12 runs. So
the success rate for each skill on the robot is 0.857, 0.916
and 0.916 respectively. The overall performance is slightly
lower than the result from simulation, but the performance
remains good. In the following part, we show the snapshots
of executing skills in Figure 6, 7 and 8. We also have a
supplementary video1 of showing how policies perform on
real robots before, during and after training to illustrate how
the policies improve over time. Notice that all the policies
are trained in simulation.

V. CONCLUSION

In this paper, we learn primitive skills for robot soccer
using DDPG algorithm. These skills are fundamental for ball
possession, scoring and playing in an adversarial case. Based
on these learned skills, we can compose these fundamental
skills for a more complex skill.

In this paper, we have the following contributions: 1) We
demonstrate that the learned skills have better performance
compared to the previous work [5] by using improved reward

1A video of better quality can be viewed in the link attached: https:
//youtu.be/mE8xfZdE3gE

Fig. 6: go-to-ball skill on real robot

Fig. 7: turn-and-shoot skill on real robot

Fig. 8: shoot-goalie skill on real robot

functions. We also use single network structure for learning
all three skills. 2) We learn a new skill for shooting at a goalie
with a sparse reward, which is a first step to learn skills in
adversarial cases. 3) Most importantly, we test the trained
skills in continuous action space and real world for robot
soccer “small-size” domain by using DRL algorithm. This
provides an alternative to achieve effective task performance
for other real mobile robot domains using reinforcement
learning. For example, following go-to-ball skill, we can
learn navigating to a position for other mobile robots. We can
also learn skills of interacting with other objects as we do
in turn-and-shoot and shoot-goalie.

Our work can be extended to learn pixel-based skills,
but due to real-time requirement for computation, we did
not use images as input in this work. Future work includes
using image input for skill learning and learning more high-
level policies in a multiple-robot system such as robot soccer
“small-size” [27].

We also observe the drawback of using deterministic
policy for adversarial cases. If the opponent learns how to
block the shot, the learned policy would eventually fail.
Therefore, another future work is to try stochastic DRL
algorithms such as Soft Q Learning for training stochastic
policies in adversarial environments [28].

The evaluation on real robot shows that the learned
policies from simulation work well in the real world. We
believe that if we further fine-tune the policies on real
robots, the skill would have much better performance. Using
domain randomization will be a potential way to increase the
robustness of policies from the simulation to real world.

ACKNOWLEDGMENT
This research is partially sponsored by DARPA un-

der agreements FA87501620042 and FA87501720152. The
views and conclusions contained in this document are those
of the authors only.

https://youtu.be/mE8xfZdE3gE
https://youtu.be/mE8xfZdE3gE

REFERENCES

[1] The RoboCup Federation, “RoboCup,” 2017. [Online]. Available:
http://www.robocup.org/

[2] J. Bruce and M. Veloso, “Fast and accurate vision-based pattern
detection and identification,” in International Conference on Robotics
and Automation, 2003.

[3] B. Browning, J. Bruce, M. Bowling, and M. Veloso, “STP: Skills,
tactics and plays for multi-robot control in adversarial environments,”
Journal of Systems and Control Engineering, vol. 219, pp. 33–52,
2005.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” Internal Conference on Learning Representations, 2016.

[5] D. Schwab, Y. Zhu, and M. Veloso, “Learning skills for robocup small
size leagues,” in RoboCup International Symposium, 2018.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, 2015.

[8] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning, 2016.

[9] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” CoRR, abs/1502.05477, 2015.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” Nature, 2016.

[12] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” Nature, 2017.

[13] J. P. Mendoza, J. Biswas, P. Cooksey, R. Wang, S. D. Klee, D. Zhu,

and M. M. Veloso, “Selectively reactive coordination for a team of
robot soccer champions.” in AAAI, 2016.

[14] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu, Keepaway Soccer:
From Machine Learning Testbed to Benchmark, 2006.

[15] W. H. Hsu and S. M. Gustafson, “Genetic programming and multi-
agent layered learning by reinforcements.” in GECCO, 2002.

[16] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, “Co-
evolving soccer softbot team coordination with genetic programming,”
in RoboCup-97: Robot soccer world cup I, 1998.

[17] D. Andre and A. Teller, “Evolving team darwin united,” in Robot
Soccer World Cup, 1998.

[18] P. MacAlpine, S. Barrett, D. Urieli, V. Vu, and P. Stone, “Design
and optimization of an omnidirectional humanoid walk: A winning
approach at the robocup 2011 3d simulation competition.” in AAAI,
2012.

[19] N. Hansen, “The cma evolution strategy: A tutorial,” arXiv preprint
arXiv:1604.00772, 2016.

[20] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, “Reinforcement
learning for robot soccer,” Autonomous Robots, 2009.

[21] M. Hausknecht, Y. Chen, and P. Stone, “Deep imitation learning for
parameterized action spaces,” in AAMAS Adaptive Learning Agents
(ALA) Workshop, May 2016.

[22] M. Hausknecht and P. Stone, “Deep reinforcement learning in param-
eterized action space,” in Proceedings of the International Conference
on Learning Representations (ICLR), May 2016.

[23] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[24] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” arXiv preprint arXiv:1610.04286, 2016.

[25] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. A. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” CoRR, 2017.

[26] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[27] D. Schwab, Y. Zhu, and M. Veloso, “Zero shot transfer learning for
robot soccer,” AAMAS, 2018. Extended Abstract.

[28] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforce-
ment learning with deep energy-based policies,” arXiv preprint
arXiv:1702.08165, 2017.

http://www.robocup.org/

	Introduction
	Related Work
	Problem Statement and Method
	Skill Description
	Algorithm
	Environmental Setup

	Experimental Results
	Training
	Skill Evaluation
	Real Robot Testing

	Conclusion
	References

